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1. Run Time

Compute specification. All of our experiments have been
conducted using a machine with 8 v100 gpus and 96 cores
CPU. The machine contained RAM memory of 748 GB for
loading the data befor passing it into the GPU for process-
ing. All through the training the algorithm has been imple-
mented to maxout the utilization of GPU resource. We used
20 worker threads per GPU for distributed data loading in
Pytorch.
Training time. We train TesseTrack on the haggling se-
quences of panoptic studio dataset for 10 epochs. The frame
resolution used across all the datasets is 384x384 pixels.
We rescale the images to the specified dimensions and stack
them for the duration of the temporal window before pass-
ing to the GPU. TesseTrack has a batch size of 1 during
training due to memory constraints. To train the network
the total compute time on a machine with 8 v100 GPUs and
96 cores CPU is 36 hours. The bottleneck for compute was
the GPU memory and can be trained faster with GPUs con-
taining larger memory.
Evaluation latency. We have used multiple state-of-the-
art datasets to evaluate the algorithm. For each dataset the
TesseTrack detection framework has been fine-tuned to pre-
dict the locations of the center of the person. The ground
truth for producing the center of each person has been com-
puted by performing an RANSAC based triangulation of the
center of the person on the detections from different views.
This fine-tuning is computed at random time instances of
the dataset. During evaluation the model is able to produce
accurate 3D detections.

During evaluation, We use parameters similar to the
training time specifications. The input images are still
scaled to 384x384 images. We stack the frames from a
temporal window before passing to the GPU. Table 2 and
Table 1 show the time taken to run each module on a V100
GPU. Since TesseTrack is a Top-Down Approach, We ob-
serve that the test time increases with number of people de-
tected by the detection network. The two segments heavily
dependent on the number of people are the tesseract con-

*Equal contribution

Time(in Seconds)
No. of People

Module 1 3 5 7
Backbone 0.03 0.03 0.03 0.03
Detection 0.05 0.05 0.05 0.05
Tracking 0.14 0.2 0.26 0.32
3D Pose 0.03 0.09 0.15 0.21

Total 0.25 0.37 0.49 0.61

Table 1: Run time(in seconds for each module) on monocular input based
on number of people with a constant window size of 5.

Time(in Seconds)
No. of People

Views Module 1 3 5 7
3 Backbone 0.08 0.08 0.08 0.08
3 Detection 0.07 0.07 0.07 0.07
3 Tracking 0.17 0.23 0.37 0.49
3 3D Pose 0.06 0.18 0.3 0.42
5 Backbone 0.12 0.12 0.12 0.12
5 Detection 0.11 0.11 0.11 0.11
5 Tracking 0.19 0.25 0.37 0.49
5 3D Pose 0.06 0.18 0.3 0.42

Table 2: Run time(in seconds for each module) on muti-view input based
on number of people with a constant window size of 5.

volution and deconvolution layers. The run time is also
dependent on the temporal window, Reducing the window
size reduces the computed time. The tracking pipeline is
the most time consuming step of the algorithm. This can
be attributed to the MLP layer converting the tesseract to a
single dimension feature vector.

During Inference, We use batch size of 1 and 5 for multi-
view and monocular sequences respectively. We found that
the run-time for monocular is 3.3 millisecond for each time
instance and nearly 30 millisecond for multi-view infer-
ence. Based on requirement run-time can be improved with
change in parameters.
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Comparisions. Table3 shows the per joint accuracy com-
pared with other baselines. This is an extension of Table 1
from the main manuscript.

Inference Discrepancies: We want to point out that the
model has been only trained on Panoptic studio and the
3D pose estimation has never be fine-tuned or retrained on
any of the other datasets. The failure of 3D pose estima-
tion on some frames of the Tagging sequence can be at-
tributed to the person being very close or far from camera or
the face keypoints. We believe finetuing the pose model in
real-world situations similar to the Tagging sequence should
boost performance on ”In the Wild” Sequences.

2. Network Architecture
Backbone. We use HRnet[1] as the backbone in our
model. The pre-final layer is passed through a convolu-
tional layer to create a feature vector of 32. This feature
dimension is consistently used in both the detection and the
tracking layer.

Detection. We use 32 as the feature vector for our voxel
grid. Inspired from [2], we pass the voxel feature map
through three 3D-ResNet blocks with three 3D-maxpooling
layers for 3D convolutions. Similarly it is passed through
three 3D-ResNet blocks and unpooling layers during 3D de-
convolution. The stride and kernel for all the 3D operations
was 3.

Tracking. The tesseract follows similar dimensions to the
detection voxel grid but with a temporal component and has
a feature vector of 32. We apply three 4D convolutions on
the tesseract to create the tesseract feature vector passed to
the matching stage. We use a 4D kernel of 3x3x3x3 and a
similar stride to compute the convolutions. This produces a
tesseract feature of 32x1x8x8x8 feature vector. This feature
is passed through a MLP to produce a 256 vector which is
the input to the matching framework. The matching net-
work solves the optimal assignment problem in differen-
tiable fashion.

Pose estimation. Once the tracking is computed the
merged pose is passed through multiple 4D convolutions
and upsampled to produce the tesseract heatmap. Similar
to the 4D convolutions the deconvolutions follow the same
stride and kernel size.

Model HI FI FT FTGA FTGL FTDL
Neck 15.2 13.1 7.6 7.6 7.1 6.9
Head 15.6 12.9 8.0 7.9 7.4 7.3
Shou. 16.0 13.6 7.7 7.8 7.0 6.8
Elbow 16.4 14.5 8.0 8.5 7.6 7.7
Wrist 16.9 14.7 8.5 8.7 7.9 8.1
Hip 17.3 13.7 8.4 8.3 7.8 7.5

Knee 17.8 14.1 8.7 8.6 7.5 7.0
Ankle 16.1 14.3 8.6 8.8 7.9 7.4
Total 16.3 13.8 8.0 8.1 7.5 7.3

Table 3: MPJPE per-joint 3D pose reconstruction error for various design
choices on the Panoptic dataset. These results represent a per-joint break-
down of MPJPE metric reported in Tab. 1 in the paper.
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